Новости
Сезонные присадки
Депрессорно - диспергирующая присадка для дизельных топлив СУПЕР-ХОЛОД
%D %d. %m. %y
Время %h~:~%m

Погода в России

Справочник

Октаное число - это один из основных показателей качества бензина, который характеризует его стойкость к детонации. Детонация (франц. detoner - взрываться, от латин. detono - гремлю) - процесс самопроизвольного воспламенения топливовоздушной смеси не от искры свечи, а от теплоты сжимаемой поршнем части рабочей смеси, горение которой приобретает взрывной характер, сопровождается характерным металлическим стуком, повышением токсичности отработавших газов и температуры в цилиндрах двигателя. При этом скорость распространения пламени в камере сгорания увеличивается с 15-20 м/с до 1500-2500 м/с. Мгновенное повышение температуры и возникновение ударных волн о стенки цилиндров может привести к перегреву и оплавлению днища поршней, прогару прокладки головки блока цилиндров, разрушение поршневых колец, ускоренному износу вкладышей коленвала.

 Октановое число определяется подбором смеси эталонных углеводородов - изооктана у которого октановое число равно 100 и н-гептана (нормальный гептан), у которого октановое число равно 0. При одинаковых условиях испытания детонационная стойкость равна детонационной стойкости испытываемого бензина. Процентное содержание изооктана в полученной смеси как раз и является октановым числом бензина. Определяют октановое число двумя методами - моторным и исследовательским на специальной моторной установке. При моторном методе имитируются более жесткие условия работы двигателя, при которых топливная смесь после карбюрации нагревается до 150°С, а частота вращения выдерживается постоянной - 900 об/мин. При исследовательскому методе частота вращения снижается до 600 об/мин, а смесь не подогревается.

 Технология определения октанового числа такова. Испытательный стенд - это одноцилиндровый двигатель внутреннего сгорания с карбюратором. Запускают его на исследуемом бензине, а уровень детонации фиксируют спецдатчики. После подбирается смесь эталонного топлива - изооктана и н-гептана, на котором двигатель работает так, как и на исследуемом топливе. Полученное процентное содержание изооктана в подобранной эталонной смеси и является характеристикой детонационной стойкости бензина. То есть если в смеси 95% изооктана, то и октановое число будет 95.

 При моторном методе испытания режимы и параметры моторной установки позволяют выявить взрывчатые свойства бензина при эксплуатации автомобиля в городских условиях (движение с переменною скоростью). Исследовательский метод имеет менее жесткий режим испытания, что позволяет исследовать процесс сгорания бензина при эксплуатации авто при постоянных режимах работы мотора. Таким образом, октановое число по исследовательскому методу на 5-10 единиц выше, чем по моторному.

Так как двигатели стали технологично совершеннее и имеют высокую степень сжатия, то нужен высокооктановый бензин. Чтобы получить такое топливо переработкой нефти, затраты будут больше и в продаже оно будет значительно дороже, поэтому используются различные присадки, повышающие октановое число.

Зачем нужно измерять ОЧ(октановое число)

Современные автомобильные бензины, как правило, представляют собой смеси компонентов, получаемых различными технологическими процессами. В бензинах в зависимости от углеводородного состава сырья и технологии получения может содержаться более 200 индивидуальных углеводородов различного строения, содержание которых, а также их взаимодействие между собой и определяет свойства бензина.

Оценка качества компонентов и товарных бензинов при их получении на нефтеперерабатывающих заводах осуществляется стандартными лабораторными методами по показателям физико-химических свойств, нормируемых соответствующими документами (ГОСТ, ТУ, СТП, условиями контрактов).

Особое значение при приготовлении качественных бензинов имеет знание показателей качества характеризующих эксплуатационные свойства товарных бензинов (октановые числа (ОЧ) по моторному и исследовательскому методам (MON, RON), плотность, фракционный состав.

 

Сокращение превышения ОЧ над нормируемым, сокращение содержания дорогостоящих добавок, рациональное использование компонентов товарных бензинов при приготовлении, дает экономию в десятки миллионов долларов в год.

Использование стандартных лабораторных методов применяемых в нефтепереработке (ГОСТ-8226-82, ГОСТ 522-86) позволяет получить результат ОЧ не ранее чем через 1 час. В реальных условиях работы заводских лабораторий, как правило, 2 - 3 часа.

Наряду со стандартными методами определения октановых чисел в настоящее время получают широкое распространение экспресс-методы, основанные на применении спектральных методов анализа. Принцип расчёта октанового числа основан на сравнительном анализе измеряемых параметров исследуемого бензина и параметров эталонных бензинов (определенных стандартными методами на установках типа УИТ), хранящихся в памяти микропроцессора.

Разработанные способы определения октанового числа автомобильных бензинов включают предварительное построение зависимости (графика, таблицы и др.) информационного параметра бензина от октанового числа эталонных бензинов.

В электромагнитном способе (патент РФ на изобретение №2196321 7 G 01 N 27/22 от 10.01.2003г.) информационным параметром является электромагнитный индекс бензина.

В высоковольтном способе - напряженность электрического пробоя бензина.

В термодинамическом способе - дроссель-эффект паров бензина.

В ультразвуковом способе (патент РФ №2189039 7 G 01 N 33/22, 29/02 от 10.09.2002г.) - скорость распространения ультразвуковой волны в бензине.

 В том числе и спектральный анализ в инфракрасной (ИК) области.

В ИК-области спектра находятся все основные гармоники колебательных спектров основных углеводородов, входящих в состав бензинов. Таким образом, ИК-спектр бензина является его уникальной характеристикой, по которой можно проводить определение таких показателей качества, как ДНП, фракционный состав, октановое число и др.

Стандартный (принятый) подход построения калибровок

В настоящее время при разработке калибровочных моделей определения таких показателей качества, как октановое число, на основании данных ИК-спектроскопии (ИК-спектров), наибольшее распространение получили методы факторного анализа, базирующиеся на множественной линейной регрессии, основные из которых - PCR (PrincipalComponentRegression) и PLS (PartialLeastSquares или ProjectionofLatentStructures). Это методы обработки данных большой размерности, для которых заранее не известна зависимость между снятой характеристикой - спектром или предикторными переменными и определяемым значением (октановым числом). Эти методы направлены на отыскание такого линейного отношения между предикторами и независимой переменной (свойством), которое наилучшим образом отражала бы эту неизвестную зависимость.

При проведении работ по созданию калибровочных моделей определения октановых чисел было выявлено, что успешно решать эту задачу с применением данных методов можно только в случае, если калибровочное множество (наборов спектров с известными значениями ОЧ) принадлежит некоторому определенному классу, характеризующемуся сходством по углеводородному составу. Иными словами: невозможно создать универсальную модель определения октановых чисел для бензинов различных процессов (крекинг, риформинг и т.д.) или различных типов (например, для бензинов А-76 и АИ-93 приходится создавать разные модели).

На основании полученного спектра нельзя определить, к какому классу принадлежит анализируемая проба бензина, и каких-либо априорных количественных оценок для принятия этого решения на настоящий момент не существует. Общепринятый путь решения этой проблемы - создание отдельного калибровочного множества для каждого известного типа бензина. На этих калибровочных множествах, с использованием известных хемометических методов (PCR, PLS и др.) создаются модели определения показателей качества. Впоследствии, при использовании полученных моделей, перед проведением анализа необходимо выбрать модель, соответствующую типу анализируемого бензина (как правило, это известно заранее).

Такой подход к определению октановых чисел методами ИК-спектроскопии, наиболее часто используемый в настоящее время, дает удовлетворительные результаты при анализе бензинов в том случае, если не происходит значительных изменений в их углеводородном составе. При изменении режимов процесса или при изменении рецептуры смесевых бензинов возможно, а зачастую и происходит, "выпадение" анализируемого образца из "своего" класса. В этих случаях надежность определения показателя качества значительно снижается. Предсказание свойств таких образцов становится недостоверным. Добавление выпавших образцов в калибровочное множество и корректировка моделей на основании такого расширенного множества, зачастую не дает положительных результатов.

Калибровочная модель становится более устойчивой к изменению углеводородного состава бензина - при последующем анализе подобного бензина, он определяется как "свой". В то же время, модель становится менее чувствительной к оценке влияния этого изменения на определяемое свойство, в результате чего точность определения свойства снижается.

При достаточно широком изменении углеводородного состава бензинов одного класса (например, при значительных изменениях параметров сырья и, соответственно, корректировке режимных параметров) происходит то, что в калибровочное множество бензина некоторого класса, определенного, как однородный, на самом деле входит некоторое количество подклассов данного бензина. Причем, в отличие от ситуации, рассмотренной выше, принадлежность каждого бензина к конкретному подклассу нам неизвестна. Другими словами, наблюдается кластеризация спектров бензинов внутри класса.

Для решения этой проблемы предлагается предварительно провести факторный анализ по всему калибровочному множеству. В некоторых случаях кластеры могут быть определены по результатам анализа, например, по "вкладу" каждого образца в значение того или иного фактора. В указанной статье предлагается ориентироваться на факторы наивысшего порядка, вклад которых в определяемое свойство имеет наибольшее значение.

Такой подход к определению кластеров представляется не вполне корректным, вследствие того, что в результате проведения факторного анализа в качестве факторов выбираются такие спектральные вариации, которые наилучшим образом линейно связаны с определяемой величиной, а, вообще говоря, связь эта нелинейная. Таким образом, влияние спектральных вариаций, имеющих на самом деле большое весовое значение, либо в значительной мере (в зависимости от "глубины" изменений данной группы углеводородов) снижается, либо вообще игнорируется. Вероятность такого искажения значимости спектральных вариаций особенно велика в случае взаимно компенсированной рекомбинации внутри одного калибровочного множества групп углеводородов, однонаправлено влияющих на определяемое свойство.

Предлагаемое решение

В отличие от стратегии кластеризации, рассмотренной выше, было выполнена кластеризация до проведения факторного анализа. Основной целью кластерного анализа было разделение спектров бензинов внутри данного класса на "квазилинейные" кластеры, характеризующиеся максимальным геометрическим подобием спектров (а, следовательно, и углеводородного состава). Работы по проведению кластерного анализа состояли из следующих этапов:

определение "подклассов" (кластеров) внутри данного класса бензинов;

разделение образцов бензина данного класса на калибровочные множества, соответствующие выявленным кластерам и построение по этим данным калибровочных моделей;

выявление условия (дискриминирующей функции) определения кластера бензина по спектру, по признаку характеризующему данный тип бензина.

Для проверки предположения о кластеризации бензинов внутри конкретного классы были выбраны бензины А-76 (более 250 образцов бензинов этого типа). Обработкой калибровочного набора методом PLS была построена модель определения октановых чисел, точность и надежность работы которой не позволяли применять ее для анализа бензинов указанного типа. Максимальные расхождения со стандартными методами (ГОСТ 511 и ГОСТ 8226) значительно превышали допустимые расхождения, предписанные для этих методов. Кроме того, по результатам расчета модели, не удавалось определить, насколько достоверно предсказано определяемое свойство.

 

ГОСТ 511-82 "Топливо для двигателей. Моторный метод определения октанового числа"Заменил: ГОСТ 511-66

http://gost.prototypes.ru/gost/511-82

 

ГОСТ. ГОСТ 511-82*. Топливо для двигателей. Моторный метод определения октанового числа

http://nordoc.ru/doc/33-33076

 

Топливо для двигателей. Исследовательский метод определения октанового числа

http://standartgost.ru/ГОСТ%208226-82

 

ГОСТ 8226-82* Топливо для двигателей. Исследовательский метод определения октанового числа

http://libgost.ru/gost/gost_nazv/56140-Tekst_GOST_8226_82_Toplivo_dlya_dvigateleiy_Issledovatel_skiiy_metod_opredeleniya_oktanovogo_chisla.html

 

Установка для определения и измерения октанового числа топлива SYP2102-VI

http://www.shenkai.ru/syp2102-VI.php

 

УИТ-85М Установка для определения октановых чисел

http://octanetest.kz/tags/uit-85.html